CONTROL DATA
L coreomaTion]

CORPORATION

CONTROL DATA®
6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

FORTRAN EXTENDED REFERENCE MANUAL
6000 VERSION 3
7600 VERSION 1

MATH S(

proas

NCE LIBRARY

L

The Math Science Library is the most efficient and comprehensive library of mathematical routines available.
It consists of over 400 routines selected for:

Speed

Accuracy

Reliability

Maintainability

Flexibility

Storage conservation

The eight areas of computational mathematics that are covered are:

e Programmed arithmetic
Elementary functions
Polynomials and special functions
Ordinary differential equations
Interpolation, approximation and quadrature
Linear algebra
Probability, statistics, and time series
Nonlinear equation solvers

The Math Science Library includes an 1800 page handbook, in eight volumes, guiding users to the routines
most suitable for their objectives.

The Math Science Library is operational on CONTROL DATA CYBER 70, 6000, and 7600 systems.

PREFACE

This publication describes the features of the FORTRAN Extended language

3 ~ AMAB® cAnn /ecnn/eenn /eonn /0000 s s
('v’Gl"SxOl’i 3. 0) for the CONTRCL DATA® VaUVU/00VUVU/00VVU/0iVu/iouy \JULupuLULD.

It is assumed that the reader has some knowledge of an existing FORTRAN
language and CONTROL DATA computer systems. The language described
herein is an extension of the ANSI FORTRAN language.

The FORTRAN compiler operates in conjunction with the Version 2 COMPASS
assembly language processor under the control of three operating systems: SCOPE
Version 3.3 and KRONOS® Version 2.0 for 6000 Series computers and SCOPE
Version 1.1 for the 7600 computer. The FORTRAN processor makes optimum use
of storage both during compilation and in generated machine language instructions.
Implementation of this processor provides the capability of compilation and exe-
cution within a single job operation as well as the simultaneous compilation of
several programs, utilizing the system's multi-programming features.

Control Data Corporation intends for the user of this product

to exercise only those features, specifications, and parameters
described in this document. Any use of adjunct code and/or un-
defined parameter values is done so at the user's risk.

Related manuals in which the FORTRAN user may find additional information
are:

Publication No.

SCOPE 3.3 Reference Manual 60305200
SCOPE 3.3 User's Guide 60252700
SIFT (FORTRAN Translator Program) 60358400
FORTRAN Extended Debug User's Guide 60329400
COMPASS 2 Reference Manual 60279900
7000 SCOPE 1 Reference Manual 60281200
KRONOS 2.0 Reference Manual 59150600

60329100 D

CONTENTS

PREFACE

CHAPTER 1

CHAPTER 2

60329100 D

PROPERTIES AND ELEMENTS OF FORTRAN

1.1
1.2

ol
RN

1.6

The FORTRAN Character Set
FORTRAN Statements
Statements
Continuations
Comments
Statement Label
Identification Field
Symbolic Names
Data Types
Constants
Integer
Real
Double Precision
Complex
Logical
Hollerith
Octal
Variables
Variable Names
Types of Variables
Arrays
Order of Array Storage
Subscripted Variables
Extended Core Storage

EXPRESSIONS

R
Q1 W W DD =

Arithmetic Expressions
Relational Expressions
Logical Expressions
Masking Expressions
Evaluation of Expressions

[,
o
[

1
-

UL L |
NNNDNRE R

A S IR RN
&mmm#%wwww

[B e B e W
|
© o o~ ~3]

i
ot
=

—

vi

CHAPTER 3

CHAPTER 4

CHAPTER 5

ASSIGNMENT STATEMENTS

3.1 Arithmetic Assignment
Mixed-Mode

3.2 Logical Assignment

3.3 Masking Assignment

CONTROL STATEMENTS

4,1 GO TO Statements
Unconditional GO TO
4.2 Assigned GO TO
Computed GO TO
4.3 IF Statements
Arithmetic IF Three-Branch
Arithmetic IF Two-Branch
Logical IF
Logical IF Two-Branch
4.4 DO Statement
DO Nests
DO Loop Execution
CONTINUE
4.5 CALL
RETURN
4,6 Program Control
STOP
PAUSE
END

INPUT/OUTPUT STATEMENTS

5.1 Modes of Input/Output
1/0 Lists
Read/Write Statements
Formatted Input/Output

Read

Input File

Write

Print/Punch

Print Control
5.5 Unformatted Input/Output

Read
Write
5.6 Namelist Statement
Input Data
Qutput Data

.7 Rewind
.8 Backspace
.9 Endfile
.10 ECS1I/0
.11 Mass Storage 1/0

() B4 I |
s o .
= w

[V B R B I

1
-

T
[ETEH

[N O L o o S
||III|I'L.LI
(s oUW, O]
N DN

1
e O o
NS

S

=
o

1
[y
o

(51}
1

oo v on
R AN
[N I R X e

1

WU'IU‘IMCHU'IO'IUICIHO'IU'IWU‘!U'IU'IM
o O

1
el e o 2B =R B I S B S

o

60329100 A

CHAPTER 7

CHAPTER 8

60329100 A

FORMAT STATEMENTS

6.1 Format Declaration
Field Descriptors
Field Separators
6.2 Conversion Specification
Iw Input
Iw Output
Ew.d Input
Ew.d Output
Fw.d Input
Fw.d Output
Gw.d Input
Gw.d Output
Dw.d Output
Dw.d Input
Ow Output
Ow Input
Aw Output
Aw Input
Rw Output
Rw Input
Lw Output
Lw Input
Complex Conversions
nP Scale Factor
6.3 Editing Specifications
nX
nH
New Record
L RN
Tn
6.4 Repeated Format Specifications
6.5 Variable Format

AUXILIARY INPUT/OUTPUT STATEMENTS

7.1 Buffer Statements
Buffer In
Buffer Out
7.2 ENCODE/DECODE Statements
Encode
Decode

SPECIFICATION AND DATA STATEMENTS

8.1 Dimensions
Variable Dimensions

8.2 Common

o “Labeled Common
Unlabeled Common
Arrangement of Common Blocks

[#2}
1
Y

11

|
A 0 N DN

[or B = = PR = R = SR FE = P« PR =PI« A = R = AR = i« I ~ PR = P = MY = PR © NI = I = I = e)
UL P T |
© W o =1

(o2« P Re = "« NI« NI« NI« NIl o)
[I B
=
o ~1 -3 &

1
[an
©

1~ =3 ~3 =3 =3 =3
|
U I CI RSP

1
[

TTETTT T
[T ST I JUR SR

vii

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

viii

8.3 Equivalence
8.4 External
8.5 TYPE

8.6 DATA

PROGRAM FUNCTION, SUBROUTINE, BLOCK DATA,
AND LIBRARY ROUTINES

9.1 Main Program

9.2 Subroutine Subprograms
ENTRY Statement
Library Subroutines

9.3 Function Subprograms
Statement Functions
Intrinsic Function
External Function
External Function Reference
Basic External Functions

9.4 Block Data Subprogram

OVERLAYS AND SEGMENTS

10.1 Overlays
10.2 Segments
Segment Control Cards
Sections
Segments

DEBUGGING FACILITY
11.1 Format

11.2 Arrays Statement
11.3 Calls Statement
11.4 Funcs Statement
11.5 Stores Statement
11.6 Gotos Statement
11.7 Trace Statement
11.8 Nogo Statement

11.9 Deck Structure

11.10 Debug Statement
11.11 Area Statement

11.12 Off Statement

11.13 Printing Debug Output

FORTRAN CONTROL CARD

12.1 Control Card Format

12.2 Source Input Parameter

12.3 Binary (Object) Output Parameter
12.4 List Parameter

[T |
[=2 IV o

\
= €O O 00 00 =]

[]
(=}

(D@&Q(DQQ!FCDQDQD@@

Sy

[ay
(=)
I
[aiy

10-1
10-3
10-4
10-4
10-5

11-1

11-2
11-2
11-3
11-5
11-6
11-7
11-7
11-8
11-9
11-14
11-15
11-16
11-17

12-1
12-1
12-1
12-2
12-2

60329100 A

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

INDEX

60329100 A

=
Do D DD
3 o w

Optimization Parameter
Invariant Computations
Register Assignment

12,8 Rounded Arithmetic Parameter

12.9 Debugging Mode Parameter

12.10 Exit Parameter

12.11 System Text File Parameter

12.12 System Editing and I/O Reference Parameter

12.13 Assembler Parameter

12.14 Control Card Examples

12.15 Small Buffers

12.16 Reference Map Level
STANDARD SCOPE CHARACTER SETS
FORTRAN DIAGNOSTICS

CROSS REFERENCE MAP

LIBRARY SUBPROGRAMS
INTERMIXED COMPASS SUBPROGRAMS
STATEMENT FORMS

SYSTEM ROUTINE SPECIFICATIONS
DECK STRUCTURE

EXECUTION TIME I/0

SUBPROGRAM AND MEMORY STRUCTURE

FORTRAN-INTERCOM INTERFACE

Error Traceback and Calling Sequence Parameter
Update Parameter (Editing Parameters)

Index~1

ix

FORTRAIN CODING FORIM

PROGRAM SAMPLE PROGRAM 'CONTROL DATA NAME

CORPORATION

ROUTINE Cone DATE PAGE OF

mUo<—=t

STATEA FORTRAN STATEMENT SERIAL

MENT 0= ZERO Iz ONE 2: Two NUMBER
NO. @: ALPHA © I: ALPHA I Z: ALPHA 2

—~Z 00

s

V 001623€09

AU gL T OO0 2 131015164178 19120420]122]23|24|25|26) 27|26 (29) 30|31 | 3233|3438 36 37| 38| 39| 40| 41|42 (43|44 (45]46)47{48)45 5051 (52|53 |54[55|56|57(56) 59|60 |61 | 82|63 |64 (63 [86 (67 68 [6970]7(|72 73(74(73]76 77|78 7980

PRGIGIRIAM TS THE S$LIUT LGN ($F AN M DEGREE| P@LYNGMIAL B Y | LEA ST -1S0UA RSt {MIE|TIHI@ (D1 1 1 |t
P REALL X G10000),5, % (1310,0:) W G203) | @ G) A G LB GL L 20 g g i | [PBILYY

v JFORMAT (T2, T3/ 4F L4700 L e d e et g o (P82

ca a2 [BORMAT GSELS 6] 0 o i s L Lot 1t [P Y3,

v P AREADE G5 1) M NG GX G D=) o v Lo g e a1l POLY 4 |
LW=2*M+1

|lIll||||ll||l|l||lll||]|ll|||J||lll]1|ll||i|||IPLQJLIY‘,SA

[oL
v B BEMN2 e b e b v c e b et i it PALY 6 |
I B LT BN SRR NN cea et e g g b (BT
A1 DB, 5| 3= 20TV oy Lo i b S T W N RO O B R NS BT R O G | 212 90 41 - TR
N LA T I W L T I A N A T N TR SN bl [PeLY9,
e PGIIEN s i e b L L v |B8 LY 10,
R LU AR S S e RN I Lo e vy g g (B8 Ly 11|
a8 BIGID=00 e e g it PBLY L2,
1oL Dlﬂl11,61,111=11H|N1,J_111111|JJ|||||1||1||||||1||11|||||||||1||||1|11?1¢1L1Y4,11,311
JE T L A A AR I S I A I tR I NI I L v ey v v e v s g |y |POL Y14

Con P EGIEBGIFY QI ey ti et b v e e e g | g B9y 5

Coon] P (L3 =2 LB | T T Y Y T A O 0 B S B B VR BT U AU R SO A B 110 A5 4 Y- TR

s JIBEROI)FP e e b e i i bt oy (P9 LY 1,7

AR LR /0] L LK (TP R /1 S O I S S A I AT I N I A R N NN e \P1@) L Y18 ;|
L3018 GID =8 (I Y (I %P,

ViV T T T YO0 B 0 N O A O S B R AV SN RV R SRR AR U O R 2 11 71 1% LTI

2y eysie] T e syl aisagis e 7 ieg9 2021 22)23)24)25)26,27) 26129 30] 1 | 32/33 34, 35,38137,3839, 40 91142(43144143)46147)48149,50]31 3253 54155158 37;58132 160 Ja1 |62 63164 65,66 167168 169 70]7: 72|73, 74 175 76 177,76 75 00

FORM 252-B

Figure 1-1

PROPERTIES AND ELEMENTS OF FORTRAN

1.1
THE FORTRAN

CHARACTER SET

1.2
FORTRAN
STATEMENTS

60329100 C

Alphabetic:
Numeric:

Special:

AtoZ

0

+ 0

—~ N %

to 9

equals

plus

minus

asterisk

skash

left parenthesis

) right parenthesis
, comma
. decimal point
$ dollar sign
space (i.e., blank)

In addition, any character of the SCOPE character set (Appendix A) may be
used in Hollerith information and in comments.

FORTRAN source programs consist of an ordered set of statements from
which the compiler generates machine instructions and constants. These
statements describe a procedure to be followed during execution of the

program.

The statements comprising the FORTRAN program are written in the fol-

lowing columns:

Statements

Statement
Continuations

Comments

Column

1-5

6
7-172
73-80

1-5

7-72
73-80

{230

Content

Statement label (optional)
Blank or zero

FORTRAN statement
Identification field

Ignored

FORTRAN character other than
blank or zero

Continued FORTRAN statement

Identification field

Cor $or *
Comments.

1-1

Except in Hollerith constants, blanks may be used freely and are ignored by
the compiler. A coding line may contain more than one FORTRAN statement
if each statement is separated by the special character $§. The next column
following $ is interpreted the same as column 7 of a normal statement. A $
may serve as a statement separator for all statements except FORMAT, END,
or labeled statements.

Continuation

Any FORTRAN statement except a comment, END statement, or loader
directive may be continued. A statement may be continued on as many as
19 lines, each denoted by a continuation character (any acceptable character
other than blank or zero) in column 6 on the continuation card. A blank or
zero in column 6 denotes the first line of a statement. Blank ca.ls within
the input deck are ignored by the compiler; however, a continuaticn card
following a blank card is treated as a new statement. (See also chapter 11,
Debugging Facility.)

Comment

In Column 1, a C, *, or $ indicates a comment line. Comments do not
affect the program; they can be written in columns 2 to 80 and placed
anywhere in the program. When a comment occupies more than one line,
each line must begin with C, *, or $ in column 1. The continuation char-
acter in column 6 does not apply to comment cards. Comments can ap-
pear between continuation cards.

Statement Label

Statements are identified by unsigned integers which can be referred to

from other sections of the program. A statement label (from 1-99999) may
be placed anywhere in columns 1-5 of the initial line of a statement. Leading
zeros are ignored. In any program unit, each statement label must be unique.

Identification Field

The FORTRAN Extended compiler is designed so that input lines may be
greater than 80 characters long (e.g., when the input medium is a file pro-
duced by one of the source editing programs such as UPDATE). Only the
first 72 characters are processed by the compiler and only the first 100
characters appear on the listing. Positions beyond 72 may be used for
identification codes or sequencing.

60329100 D

1.3
SYMBOLIC
NAMES

1.4
DATA TYPES

1.5
CONSTANTS

1.5.1
INTEGER

60329100 C

A symbolic name may be any alphabetic character followed by 0-6 alphanu-
meric characters. It may not contain special characters. Embedded blanks
are ignored. Symbolic names are used for: subprogram and subroutine
names, function names, variables, block data program, main program,
input/output unit, common block, and namelist group names.

Each of the seven types of data has different significance. The types are:
integer, real, double precision, complex, logical, octal, and Hollerith.

Integer type may assume only whole number values. For multiplication and

division of integer operands, the result will be invalid if it exceeds 247-1,
For addition and subtraction, the full 60-bit word is used.

Real type data is carried in normalized floating point form. The magnitude
of values of real type data is in the range 10322 to 10-293 with approximately
15 significant digits and 14 digit precision.

Double precision data is similar to type real, but it has approximately 29
significant digits.

Complex data consists of an ordered pair of real data. Each part has the
same precision as real data. The first part is the real part, and the second °
is the imaginary part.

Logical data has only a true or false value. True is represented by any
negative value, and false is represented by any positive value including +zero.

Octal data may consist of any value from 0-7...7 which can be represented
in a maximum of 60 bits (20 octal digits).

Hollerith data consists of strings of characters. Blank characters are valid
in a Hollerith string.

A constant is an unvarying quantity. The types of constants are the same
as the types of data.

An integer constant is a string of up to 18 decimal digits with a magnitude

no larger than 2591, If multiplication or division is specified, the operands
and result should be less than 247_1. Effectively, an integer constant string
may contain up to 15 decimal digits with a maximum magnitude of 247.1. Tt
may not contain embedded commas. For example:

1-3

0 -2145637
67 45753576357
345 =77

The result of integer addition or subtraction must not exceed 259-1. Integers
used as subscripts and DO indexes are limited to 217-2. The integer constant
may be positive, zero, or negative (if unsigned, it is assumed to be positive)
and must be within the allowed magnitude.

The maximum value of an integer constant as a result of a conversion from

a real constant is 247-1, The maximum value of an integer constant as a
result of multiplication or division must not exceed 247-1. If the value should
exceed the magnitude allowed, the high order bits are lost.

1.5.2

REAL A real constant may be represented by a string of up to 15 significant decimal
digits. It contains a decimal point or an exponent representing a power of
10, or both. Real constants may be in the following forms:
n. .n n.n n.nE+s n. Ets nE+s .nE+s
n is the coefficient; E signifies that the succeeding datum is the exponent;
and s is the base 10 exponent. The value of s must be in the range -308 to
+337. The plus sign may be omitted if s is positive. The magnitude of
non-zero absolute real values may be in the range 107293 t0 10322, with
up to 15 significant digits. K the range of the real constant is exceeded, the
constant is considered zero and a compiler diagnostic is issued.
Examples:
3.E1 (means 3.0 x 101; or 30.)
3.1415768 31.41592E-01
314.07 .31415E01
-3.14159E+279 .31415E+01
30E02 -30E02
1.5.3

DOUBLE PRECISION A double precision constant is written as a string of digits and represented
internally by two words. The forms are:

.nD+s n.nD+s n. D+s nD+s

The D must always appear; the coefficient is n; s is the exponent of base 10.

1-4 60329100 D

The plus sign may be omitted for positive s. The range is the same as that
of a real constant but is accurate to approximately 29 decimal digits. I
the range is exceeded, a compiler diagnostic is issued.

Examples:

3.1415927D+1 3141.593D3
3.1416D0 31416.D-04
3131.593D-03 31416D02

1.5.4
COMPLEX A complex constant is an ordered pair of signed or unsigned real constants,
separated by a comma, and enclosed in parentheses (rl,r2). rl represents
the real part of the complex number; r2 represents the imaginary part.
rl and r2 must adhere to the magnitude specified for real constants. If
this range is exceeded, a compiler diagnostic is provided. Diagnostics also
occur when the pair contains integer constants, ‘including (0, 0).
Examples:
FORTRAN Representation Complex Numbers
(1.,6.55) 1. +6.551
(15.,16.7) 15. +16.7i
(-14.09,1.6E-03) -14.09 + . 00161
0.,-1.) 0. -1.0i
1.5.5
LOGICAL Logical constants assume only the values of true or false. When the com-

piler generates a value for the constant . TRUE., it will generate a minus
one; for the constant . FALSE., a zero is generated. Logical constants
must be preceded and followed by a period and have the forms:

.TRUE. or .T.
.FALSE. or .F.

Example:

LOGICAL X1,X2

X1=.T.
X2 =, FALSE.)) T

60329100 A 1-5

1.5.6
HOLLERITH

1.5.7
OCTAL

1-6

A Hollerith constant is of the form hHf, hRf (right justified), or hLf (left
justified). h is an integer constant whose value is greater tkan zero; f
represents the Hollerith data and must contain exactly h characters. When
the hHf form is used, if h is not a multiple of 10, the last word is left justi-
fied and blank filled. Incomplete words in the hRf and hLf forms are binary
zero filled.

Blanks are significant in a Hollerith data string. Hollerith constants are
stored internally in display code. (See Appendix A.)

Hollerith constants may be used in arithmetic expressions, DATA and CALL
statements, and in function argument lists. If the constant is an operand of
an arithmetic operation, an informative diagnostic to that effect is issued.

Examples:

6HCOGITO

4LERGO

3RSUM

3HSUM
The maximum number of characters allowed in a Hollerith constant depends
on its usage. In an expression, h may not be greater than 10; in a DATA
statement, h is limited only by the number of characters that can be contained
in a maximum of 19 continuation lines. If more than 10 characters are given

in a DATA statement for such a constant, only the last word will have the
appropriate fill.

An octal constant consists of 1 to 20 octal digits followed by a B. The
form is:

nj.. niB
If the constant exceeds 20 digits, or if a non-octal digit appears, a fatal
compiler diagnostic is issued. When fewer than 20 octal digits are specified,
the digits are right justified and zero filled.

Example:

2374216B
77777768
777000777000777B

60329100 A

1.6
VARIABLES A variable is a symbolic representation of a quantity that may assume
different values during execution of a program.

1.6.1

VARIABLE NAMES A variable name may be any combination of 1 to 7 alphanumeric characters,
must begin with an alphabetic character, and may contain embedded blanks.
It may not contain special characters. For a main program, the program
name may not appear as a symbolic name in any statement other than the
PROGRAM statement.

1.6.2

TYPES OF VARIABLES The type of a variable may be declared explicitly with the FORTRAN type
declarations. (The type of the data is converted to the type of the variable.)

For example:

INTEGER ABC123, GNU12, CATXXX, FIREOUT, JOKER
REAL ISPY, JASONII, KOOR47, NVRT, SAMPLE

If integer and real variables are not declared explicitly, the type is deter-
mined by the first character of the symbolic name. I the name begins with
1, J, K, L, M, or N, the variable is assumed to be integer.

115, JK26, KKK, LB02, NP456L, and MM are classed as integer variables
and must adhere to all limitations stated for that type. Variables beginning
with characters A-H and O-Z are considered to be real and must adhere to

all limitations stated for that type.

Complex, logical, and double precision variables must be declared explicitly
by a type declaration. The values which the variables represent must adhere
to the limitations stated for the corresponding type of constant.

Octal and Hollerith data are interpreted as though they were typeless. They
may be assigned to variables of any type, either with simple assignment
statements or with input statements, and will undergo no type conversion in
the process. When one -operand of an arithmetic operation is an octal or
Hollerith constant, it will be interpreted as if it agreed in type with the other
operand. When both operands are octal or Hollerith constants, they are con-
sidered to be type integer. The same rules apply to relational expressions.

Examples:

REAL X,Y -
100 X=20B .
200 Y= 10B + 10B

60329100 D » 1-7

| 163
ARRAYS.

| 1.6.4
ORDER OF ARRAY
STORAGE

1-8

After execution of these statements, X and Y will not have the same
value. X will have the real value 0.0, and Y will have the real value
16.0. The assignment is made to X in statement 100 without conver-
sion, and the octal value 00000000000000000020B is interpreted as a
floating point number indistinguishable from 0.0, since X is real. In
statement 200, however, because both operands of the addition are
type octal, the result is considered to be type integer, and the integer
16 is converted to floating point before being assigned to Y.

I= 10HTYPEWRITER + 001B
PRINT 1, I
1 FORMAT (1X,A10)

In this example, the word TYPEWRITES will be output.

X= 10HTYPEWRITER + 001B
PRINT 1, X
1 FORMAT (1X,A10)

In this example, 0 A5J,9R/J- will be output, due to the conversion to
floating point which will take place before assignment to X.

An array is an ordered set of variables identified by a variable name. Each
variable in the array is referred to by the array name followed by a subscript
which indicates its relative position within the array. The entire array may
be referenced by the array name without subscripts when used as an item in
an input/output list or in a DATA statement.

Arrays may have one, two, or three dimensions and must be defined at the
beginning of the program in a DIMENSION, COMMON, or type statement.
When a reference is made to an array, if the subscripts exceed the magni-
tude of the dimensions declared initially, a position outside the array will
be accessed. If the number of subscripts is greater than the number of
dimensions defined, a diagnostic is issued.

Arrays are stored in ascending storage locations, with the value of the first
of their subscripts increasing most rapidly and the value of the last increas-
ing least rapidly.

60329100 D

The following list shows the order of a three-dimension array A3,2,3).
The first subscript varies from 1 to 3, the second varies from 1 to 2, the
third varies from 1 to 3.

ALY ARLD AG,LL A@2,1) A@2,1) AB.2,1)—
L A@,1,2) A@,1,2) AG,1,2) A(L,2,2) A@,2,2) AB,2,2)

o a o a

] P A sm o+ o A 7 as A 10 ay A 1 \
—= A(1,1,3) A@2,1,3) A@,1,3) A(1,2,3) A{Z,2,93) A{3,2,3)

Array allocation is discussed further under DIMENSION declaration. The
location of an array element with respect to the first element is a function
of the maximum array dimensions and the type of array.

Given DIMENSION A (L, M, N), the location of A(i,j,k), with respect to the
first element of the array, is given by A + (i~1+L*(j-1+M*(k-1)))*E.

E is the element length, the number of storage words required for each
element of the array. For real, logical, and integer arrays, E=1. For
complex and double precision arrays, E = 2.

Example:

In an array defined by DIMENSION A3, 3,3) where A is real, the loca-
tion of A(2,2,3) with respect to A(l,1,1) is:

LocnA(2,2,3) = LocnA(1,1,1) + 2-1+3%(2-1+3%(3-1))) ¥1 = LocnA+22

1.6.5 |

SUBSCRIPTED
VARIABLES A subscripted variable is an alphanumeric identifier that is the name of an

array followed by up to three subscript expressions representing a single
element within the array. The elements of a subscript expression are
separated by commas and the expression is enclosed in parentheses. Sub-
script expressions may be any legal arithmetic expression. If the number
of subscript expressions used in a reference is less than the declared di-
mensionality, the compiler assumes missing subscripts have a value of one
(see examples below). If the subscript list does not appear, all subscript
expressions are assumed to be one, and an informative diagnostic is issued.

¥ the subscript expression is not integer, the value will be truncated to
integer.

The value of the subscript must be greater than or equal to one and less than !
or equal to the maximum specified in the array specification statement, or

the reference will be outside the array. If the reference is outside the bounds
of the array, results are unpredictable.

FORTRAN Extended permits the following relaxation of the representation of
subscripted variables:

60329100 D 1-9

Given A(Dl,Dz,D3), where the Di are integer constants,
then A(I,J,K) implies A(I,J,K)
A(I,J) implies A(I,J,1)
A(D implies A(I,1,1)
A implies A(1,1, 1)t
Similarly for
A@D,,D,)
A(L,J) implies A(L,J)
A(D) implies A(I, 1)
A implies A(1,1) T

and for A(Dq)
A(D) implies A(I)
A implies A(1)t

The elements of a single-dimension array A(Dl) may not be referred to as
A(I,J,K) or A(,J). Diagnostics occur if this is attempted.

T Except in input/output lists and DATA statements.

1-10 60329100 A

1.6.6
EXTENDED CORE
STORAGE (ECS)

60329100 D

An ECS variable must be defined explicitly by a type declaration. Each ECS
variable occupies a 60-bit word and resides in extended core storage (ECS) in
the 6000 series. The 7600 ECSvariables reside in large core memory (LCM).

For the 7600, subroutines READEC and WRITEC will operate on LCM and
small core memory (SCM) in the same manner as ECS and central memory
in the 6000 series. ECS variables may appear in the source program only in
the following circumstances:

In 2 COMMON statement as an element of an ECS common block
In a CALL or function reference as an actual parameter

In a SUBROUTINE or FUNCTION statement as a dummy parameter
In a type ECS statement
In a DIMENSION statement

Only one common block may contain ECS variables, and all variables in the
block must be of type ECS.

1-11}

21
ARITHMETIC
EXPRESSIONS

60329100 A

EXPRESSIONS 2

An expression is a constant, variable (simple or subscripted), function ref-
erence, or any combination of these separated by operators and parentheses.
The four kinds of expressions in FORTRAN are: arithmetic and masking
{Boolean) expressions which have numerical values, and logical and rela-
tional expressions which have truth values. Each kind of expression is
associated with a group of operators and operands.

An arithmetic expression is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements identify values
of one of the types integer, real, double precision, complex, octal, or
Hollerith.

Arithmetic Operators Arithmetic Operands
+ addition Constants
- subtraction Variables (simple or subscripted)
* multiplication Evaluated functions

/ division
** exponentiation
Any unsigned constant, variable, or function reference is an arithmetic ex-

pression. If X is an expression, then (X) is an expression. If X and Y are
expressions, then the following are expressions:

X +Y X-Y
X*Y X/Y
_X X**Y
+X

An expression may not contain adjacent operators, such as X +/ Y. Omission
of an operator, as for implied multiplication (X) (Y), for instance, is not
valid and results in a compiler diagnostic.

The -mode-of an-arithmetic expression is determined by the type specifications
of the variables in the expression. The following table indicates how the mode
is determined from the possible combinations of variables.

Table 1. Mixed Mode Arithmetic Expressions
Double
- % ;
+ / |Hollerith |Integer |Real Precision Complex |Octal
Double
I Real C 1
nteger |Integer Integer ea Precision omplex |Integer
Real Real Real Real Dou.bl‘e Complex |Real
Precision
Double Double Double Double Double Double
. Complex L
Precision| Precision| Precision |Precision {Precision Precision
Complex | Complex |Complex |[Complex |[Complex | Complex |Complex
Double
Octal Integer Integer Real Precision Complex |Integer
Hollerith |Integer Integer |[Real D01‘1.b1.e Complex |Integer
Precision

The following examples are valid expressions:

A

3.14159

B + 16.

427

(XBAR +(B(I,J+1, K) /3))

-(C + DELTA * AERO)
(B - SQRT(B**2*(4*A*C))) /(2. 0*A)
GROSS - (TAX*0.04)
TEMP + V(M, MAXF(A, B))*Y**C/ (H-FACT(K+3))

The arithmetic operator denoting exponentiation (**) may be used to combine

constants, variables, expressions, and subscripted variables.

Rules

governing the types of variables and constants used in the exponentiation
operation are given on the following page:

60329100 A

2.2
RELATIONAL
EXPRESSIONS

60329100 A

Base

Integer

3

Complex

Double
Precision

Exponent

Integer

Real

Double Precision
Complex

Doublée Precision
Complex

Integet

Integer

Real

Double Precision
Complex

Result

Integer

Real

Double Precision
Complex

Real

Real

Double Precision
Complex

Complex

Double Precision
Double Precision
Double Precision
Complex

The following examples illustrate how constants, variables, and expressions
may be combined using the arithmetic operator, **.

Examples:

Expression
CVAB**(I-3)
D**B

C**]

BASE(M, K)**2. 1

K**5

314D-02%*
3.14D-02

Type Result
Real**Integer Real
Real**Real Real
Complex**Integer Complex

**Real

Integer**
Integer

Double Precision

Double Precision

Integer

**Double Precision

Double Precision

Double Precision

A relational expression has the value true or false; it contains two arithmetic
expressions separated by a relational operator. The types of operands may be

combined in the same manner as defined for arithmetic operators. Only the
real part of complex elements are compared by relational operators, except

for - EQand—NE+—

2-3

2-4

Relational operators indicate comparison operations between operands and
are enumerated below:

.EQ. Equal to (3

.NE. Not equal to (¥

.GT. Greater than (>)

.GE. Greater than or equal to (=)
.LT. Less than (<)

.LE. Less than or equal to (=)

A relational expression has the form:

a . opa

1 2

The a; are arithmetic expressions; op is an operator belonging to the above
set.

A relation is true if a; and a, satisfy the relation specified by op; otherwise
it is false. A false relational expression is assigned a positive value; a

true relational expression is assigned a negative value. Relations are eval-
uated as illustrated in the relation p.EQ.q, which is equivalent to the ques-
tion: Does p - ¢ =0? The difference is computed; and if it is zero, the
relation is true; if the difference is not zero, the relation is false. Relational
expressions are converted internally to arithmetic expressions according to
the rules of mixed-mode arithmetic (Table 1). These expressions are eval-
uated to produce the truth value of the corresponding relational expressions.

The order of dominance of the operand types within an expression is the order
stated for mixed mode arithmetic expressions.

In relational expressions, +0 is considered equal to -0.

aj op ag op ag. .. is not a valid expression. The relations a, op az, a; op
(az) are equivalent.

Examples:
A .GT. 16. R() .GE. R(I-1)
R -Q(D)*Z .LE. 3.141592 K .LT. 16
B-C .NE. D+E I.EQ. J(K)

@) -EQ. (J(K))

60329100 A

23

LOGICAL

EXPRESSIONS A logical expression is formed with logical operators and logical elements
and has the value true or false. (The values have the same internal repre-
sentation as for relational expressions, section 2.2.)

Logical Operators Alternate Form
.OR. Logical disjunction .O.
.AND. Logical conjunction LA,
.NOT. Logical negation .N.

A logical expression has the general form:

L1 op L2 op L3.. .
Li are logical variables, logical constants, logical functions, logical expres-
sions enclosed in parentheses, or relational expressions; and op is the logical
operator .AND. indicating conjunction or .OR. indicating disjunction.
The logical operator that indicates negation appears in the form:

.NOT. L1

Each expression is evaluated by scanning from left to right, with logical oper-
ations being performed according to the following hierarchy of precedence.

first .NOT.
then .AND.
then .OR.

A logical variable, logical constant, or a relational expression is, in itself,
a logical expression. If Ll’ L2 are logical expressions, then the following
are logical expressions:

. NOT. L1

Ll .AND. L2

L1 .OR. L2
If L is a logical expression, then (L) is a logical expression. If L L2 are
logical expressions and op is .AND. or .OR., then L op op L2 is never
legitimate. However, .NOT. may appear in combination with .AND. or .OR.
only as follows:

60329100 A 9-5

.AND. .NOT. L,
.OR. .NOT. L,
.AND. (.NOT....)

.OR. (.NOT....)

| o N
I = e =

-NOT. may appear with itself only in the form .NOT. (.NOT. (.NOT. L))
Other combinations cause compilation diagnostics.

¥ L, L, are logical expressions, the logical operators are defined as

follows:
. NOT. L1 is false only if L1 is true
L1 .AND. L2 is true only if Ll’ L2 are both true
L1 .OR. Lz is false only if Ll’ L2 are both false
Examples:

1., B-C=A=B+C
is written B - C .LE. A ,AND.A.LE.B+C

2. FICA greater than 176.0 and PAYNMB equal to 5889.0
is written FICA .GT. 176.0 .AND. PAYNMB . EQ. 5889.0

3. An expression equivalent to the logical relationship P implies Q
might be written in two ways:

.NOT. (P.AND.(.NOT. Q)
.N.(P.A.(.N.Q))

24
MASKING

EXPRESSIONS Masking expressions consist of masking operators and elements; they
resemble logical operations in appearance only.

In a masking expression, 60-bit logical arithmetic is performed bit-by-bit
on the operands within the expression. The operands may be any type vari-
ables, constants, or expressions, other than logical. No mode conversion is
performed during evaluation. If the operand is complex or double precision,
operations are performed on the real part, or higher order word. Although
the masking operators are identical in appearance to the logical operators,
their meanings are different. They are listed according to hierarchy. The
following definitions apply:

2-6 60329100 D

.NOT. or .N. bit-by-bit logical negation
.AND. or .A. bit-by-bit logical multiplication
.OR. or .O. bit-by-bit logical addition

The operations are described below:

P v p.AND.v p.OR.v .NOT.p
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

If Bi are masking expressions, variables or constants of any type other than
logical, the following are masking expressions:

.NOT.Bl Bl.AND.B Bl.OR. B2

2

If B is a masking expression, then (B) is a masking expression .NOT. may
appear with . AND. or .OR. only as follows:

.AND..NOT.
.OR..NOT

.AND. (.NOT. ...)
.OR. (.NOT. ...)

Masking expressions of the following forms are evaluated from left to right.

A _AND. B .AND. C...
A .OR. B.OR. C...

Masking expressions must not contain logical operands.

Examples:
A 77770000000000000000 octal constant
D 00000000777777777777 octal constant
B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant

60329100 A 2.7

25
EVALUATION OF
EXPRESSIONS

2-8

.NOT. A is 0000777777777TTTTTIT

A.AND. C is 20040000000000000000
A.AND..NOT.C is 57730000000000000000
B.OR..NOT.D is T7T777777000000001763

The last expression could also be written as B.O. .N.D

Function references are evaluated before any other operation is per-
formed.

Expressions are evaluated according to the following rules:

1.

3.

If the expression contains subexpressions enclosed by parentheses,
all such subexpressions must be evaluated before the expression

can be evaluated as a whole. The most deeply nested subexpression
will be evaluated first., Evaluation of a parenthesized subexpression
produces an intermediate result, which will be treated like any other
operand,

If the expression consists of a series of terms (including parenthe-
sized subexpressions) separated by operators, the order in which
the indicated operations are performed is determined by the prec-
edence of operators, as ‘follows:

*x exponentiation class 1
/ and * division and multiplication class 2
+ and - addition and subtraction class 3
relationals class 4
. NOT. class 5
.AND, class 6
.OR. class 7

The lowest class (1) of operations is performed first. Since unary
plus and minus signs are treated as operations on an implied zero,
they have a precedence of class 3, For example, +2 is treated as
0+2, and -3 is treated as 0-3.

When two or more operators of the same class appear in an ex-
pression, where parentheses do not indicate which operation is to
be performed first, evaluation proceeds from left to right.

Array element subscript expressions and arguments to functions will
be evaluated before the value of the array element or functionreference
is used as an intermediate result. If nesting of subscripts or function
references occurs, those most deeply nested will be evaluated first.

The type of an evaluated expression depends on the types of its terms
as explained in section 2.1. If dividing one integer by another produces
a remainder, the result is truncated; 11/3 produces the result 3.

60329100 D

The evaluation of an expression with any of the following conditions is
undefined:

Negative-value quantity raised to a real, double precision, or complex
exponent

Zero-value quantity raised to a zero-value exponent

Infinite or indefinite operand

Element for which a value is not mathematically defined, such as division

by zero

If the error traceback option is selected on the FTN card (Chapter 12), the
first three conditions will produce informative diagnostics.

In the following examples, R indicates an intermediate result in evaluation,
A**B/C+D*E*F-G is evaluated:
A**B R1
R /C — R,
D*E — R3
R3*F — R4
Ry-G — Rg
Ry +Rs—~ Rg evaluation completed
A¥¥B/(C+D)*(E*F-G) is evaluated:
A*¥*B — R1
C+D — R2
R,/R, — R
E*F — R4

3

R4—G —>R5

RS*R 5 RG evaluation completed

H(13)+C(I, J+2)¥(COS(Z))**2 is evaluated:

CoS(z) — R,
%k —
Rl 2 RZ

(Evaluation of the index function)

* —_
R *C(I,J+2) — R,
R +H(13) — R

, evaluation completed

60329100 C 2-9

The following are examples of expressions with embedded parentheses:

A*(B+((C/D)-E)) is evaluated.
C/D —R,

1
Rl—E —- R2
B+R2 —-R3
A"‘R3 —- R 4 evaluation completed

(A*(SIN(X)+1.)-Z)/(C*(D-(E+F))) is evaluated:
SIN(X) — Ry
R;+1l. — R,
* —
A R, - R
R,-Z —R

3

4

E+F —»RS

D—R5 — RG

C*RG — R7

R4/R7 —~ Ry evaluation completed

2-10 60329100 A

ASSIGNMENT STATEMENTS 3

3.1
ARITHMETIC
ASSIGNMENT

60329100 A

Statements are classified as executable or nonexecutable; executable state-
ments specify actions. Assignment statements are executable. They assign
values with four types of operations; arithmetic, logical, assign (Chapter 4),
and masking.

The general form of the arithmetic assignment statement is v = e, where v is
a variable, simple or subscripted, other than logical; and e is an arithmetic

expression. The = indicates that v is assigned the value of the evaluated ex-
pression e. Mode conversion occurs if v is of a type different from e.

Examples:

=-A
B(I, 4=CALC(I+1)*BETA+2. 3478
39 XTHETA = 7.4*DELTA /(A(I,J,K)+BETA)
RESPONS=SIN(ABAR(INV+2, JBAR) /ALPHA(J, KAPL(I))
4 JMAX =19
AREA=SIDE1*SIDE2
PERIM=2. *(SIDE 1+SIDE?2)

Several variables may be assigned the value of the same expression with the
following form:

V1:V2=. . Vm:e

The value of expression e is converted to the type of v, and stored; ¥, is

then converted to the type of v,,_1 and stored. The process is repeated until
a value is stored in v;.

Example:

RATE=2.0
DATA=6.9

DATA=DATA1=LDATA=DATA2=DATA*RATE

The variable, DATA2, equals 13.8 from the expression DATA*RATE.
LDATA equals 13 by real-to-integer conversion. DATA1 equals 13.0
by integer-to-real conversion; then DATA equals 13.0 by real-to-real
assignment.

MIXED-MODE The type of an evaluated expression is determined by the type of the dominant
operand; however, this does not restrict the types that identifier VvV may
assume. (v may not be logical). A complex expression may replace Vv, even
if v is real. TABLE 2 on page 3-4 shows the v = e relationship for all
standard modes. The mode of v determines the mode of the statement.

Examples:
Given: Ci’ A 1 Complex
D.,,A Double
i’2
R,,A Real
i3
Ii »A 4 Integer

1. Alqzl*cz-c3/c (6.905, 15.393)=(4.4,2. 1)*

4 (3.0,2.0)-(3.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>